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SUMMARY:  This study consists of determining the optimal set point of the temperature of the 
fluid flowing through heat exchangers in a RTM mold so as to reach a predetermined thermal 
history in the composite part. The metallic mold is composed of several parts. Assembling these 
parts is not possible without introducing imperfect contacts that perturb heat transfer between 
them. Then in order to estimate the optimal set point of the temperature of the fluid, it is 
necessary in a first stage to evaluate the most influent thermal contact resistances between the 
parts. The determination of the TCR is achieved by an optimization approach and carried out on a 
2D transverse cut of the mold. Experimental temperature measurements in the mold are matched 
to the computed responses of the heat conduction model. A least square criterion is minimized by 
using the conjugate gradient algorithm. The gradient of the criterion is determined by solving a 
set of adjoint equations. After the identification of these parameters, the same optimization 
method is used to compute the optimal set point of the fluid temperature. It is notable that the 
same set of adjoint equations is used to solve both problems. 
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INTRODUCTION 
 
The use of structural pieces made of composite materials for aeronautic applications has 
increased a lot these last years. The Resin Transfer Molding is one of the processes used for the 
manufacture of such pieces. This process consists in injecting with low pressure a thermoset resin 
into a dry preform previously disposed into a closed mold. After the filling of the mold, the 
curing of the resin occurs. Then after the curing the piece is removed from the mold and the next 
cycle begins. To keep this process profitable in front of other ones [1], time cycles must be 
reduced and quality of pieces controlled. Heat transfer appears to be a key point to reach these 
conditions in the different stages of the process. In the case of aeronautic applications the molds 
are often metallic. The thermal regulation of these molds is achieved most of the time with the 



help of air oven. The use of air oven generates several constraints among which the financial 
investment is one of the most significant. Furthermore size of the manufactured pieces which 
become increasingly large may prevent the use of air oven. In these devices air is the fluid which 
transfers heat. However the thermal inertia of air is so weak that even with a high circulating 
velocity the heat transfer remains slow. As a consequence temperature cycles are long and the 
accurate control of temperature is difficult. For these reasons a prototype mold was designed to 
enable a better control of heat transfer in the piece [2] while increasing the rate of output. This 
mold possesses its own heat exchangers what makes it autonomous the use of air oven being 
useless. The temperature of the fluid circulating in these exchangers can be controlled. Then from 
a desired cycle of temperature in the preform one can determine with the appropriate method the 
temperature to impose on the heat exchangers. 
 
 

EXPERIMENTAL PROCESS 
 
The mold is composed of several metallic elements as indicated by the cut view in Fig.1. The 
heating and the cooling of the mold and the piece are ensured by heat exchangers positioned on 
the external surface of the mold. The temperature of the fluid which flows in the exchanger is 
controlled. The composite part manufactured with this mold (grey part in Fig.1) is a beam which 
has a shape of H. It is composed of carbon reinforcement and epoxy resin. It possesses a length of 
about 9 m and a thickness varying from 5 mm to 9 mm. 
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Fig. 1  2D cut view of the mold. 
 
Thermocouples are inserted at different locations in the part and in the mold. In the followings 
the readings of these sensors will be denoted by ( ) 5,1=iiY . As indicated in Fig. 1, Y  and Y1 2 are 
located in the preform; Y , Y  and Y3 4 5 at different positions in the mold. The goal of this work is to 
determine the temperature of the fluid so as to reach a predetermined cycle in the preform. This 
cycle of temperature imposed by the manufacturer consists in heating the preform at a first level 
of temperature where the resin is injected. After the end of the injection, it is heated again to 
reach a second level of temperature so as to polymerize the resin. In the last part of the cycle it is 
cooled down to ambient temperature where the part can be removed from the mold. However as 
described before assembling the different parts of the mold is not possible without introducing 
imperfect contacts that perturb heat transfer between the parts. Thermal contact resistances (TCR) 
allow modeling the influence of these perturbations on the temperature field in the mold. To point 



out the influence of TCR, two numerical resolutions of the conduction problem were performed 
by considering two different values of TCR (  in the first case and  
in the second case). The difference of temperature in the preform obtained between these two 
cases reaches 5°C for an increase of 35°C what is not negligible. Then in order to estimate the 
optimal set point of the fluid temperature, it is necessary in a first stage to evaluate the most 
influent thermal contact resistances between the parts. 
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NUMERICAL PROBLEM STATEMENT 
 
As explained before two inverse heat conduction problems must be solved. The first one consists 
in estimating the values of the different TCR and the second one in determining the optimal 
temperature set-point of the fluid in the heat-exchanger. The spatial domain used to compute the 
numerical solution of the problems is represented on Fig.2. It is simplified compared to the initial 
one. For reasons of symmetry, only half of the mold is represented. The frame of the mold is not 
represented either, the thermal losses in this part are sufficiently weak to be neglected. Finally the 
heat exchangers are not modeled. Indeed meshing the heat exchangers will increase the number 
of unknowns and will not improve significantly the results. Then in the first problem (estimation 
of TCR) a temperature imposed on the external surface of the mold on the sites of the exchangers 
is used as boundary condition. In the second problem instead of determining directly the 
temperature in the heat exchanger we estimate the optimal heat flux on the boundaries ( ) 3,2,1=Γ ii . 
Then by using the same kind of inverse method, one can calculate the temperature of the fluid 
inside the channels of the exchanger to reach this wall temperature.  
 
Six different domains are considered. Each domain presents non perfect contact with its 
neighbors. By solving the sensitivity problem according to the different TCR it is shown that the 
contacts on internal boundaries Γ11, Γ12 have a very weak influence on the temperature field. For 
this reason, the TCR on these boundaries are fixed to a constant value and will not be estimated. 
Moreover since contacts on boundaries Γ13 and Γ16 occur in the same conditions (material, shape) 
we model it by the same TCR value. The same reasoning leads to choose only one value for 
boundaries Γ15 and Γ17. Then only four TCR have to be estimated. For convenient reasons inverse 
of TCR (i.e., equivalent to heat transfer coefficients) are estimated. Then in the followings, these 
parameters will be noted : h( ) 4,1=iih ; h ; h corresponds to boundary  to boundary 14Γ 12Γ3 4 5 to 
boundaries  and h1613 Γ∪Γ 6 to boundaries . 1715 Γ∪Γ
 
For practical reasons only heat transfer equations of the sub-domain Ω2 are presented (Eqn. 1). 
These equations can easily be generalized to the whole domain. In Eqn. (1) q(t) is a heat flux, h∞ 
is the heat transfer coefficient with the surroundings and T∞  is the ambient temperature. 
Thermophysical properties ( λρ ,,Cp ) are proper to each sub-domain Ωi. It is noticeable that the 
resin is not modeled. Indeed the mold has such an important thermal inertia that the effects of the 
resin are negligible. In particular the heat released by the polymerization of the resin will not be 
taken into account in the model. 
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Fig. 2  2D spatial domain used for solving the numerical problem. 
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Both inverse problems are formulated in the least-square sense and consist in determining the 
optimal solution which minimizes the functional: 

( ) ( ) ( )∑∫ −=
j

t

jjj
f dttyxTtYJ

0

2
;,, ββ  (2)

where β corresponds to the parameters which have to be determined and T is the solution of heat 
equation (1) on the whole domain. The unknown to be determined are: 

( ) 4,1== iihβ ( )tqfor the identification problem, and  is imposed. • 
( ) 4,1=iih( )tq=β  for the input problem, and  are known. • 

 
Conjugate Gradient Algorithm (CGA) 
 
These two problems are solved by using the classical CGA. This algorithm is iterative and 
consists at each iteration k+1 in correcting the previous estimate  according to kβ



( ) ( )kk JJ ββ <+1kkkk wρββ +=+1  in order to obtain . In this expression is the search 
direction and the descent length. By naming 

kw
J∇kρ  the vector gradient of the functional , the 

vector  and the scalar  are determined according to the gradient equations: 
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The length of descent ρ is computed to minimize the following scalar function ( )rφ  either by 
solving the sensitivity problem or by using a minimization algorithm [3]: 
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The Adjoint Problem  
 

( )βψ ,,TLLet us introduce the Lagrange multiplier ψ  [4,5] and the Lagrangian associated to the 
optimization problem defined by (2) and the constraint corresponding to the first equation of the 
system (1): 
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When the adjoint variable is fixed the differential of L is equal to: 
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the Lagrange multiplier is then chosen in order to verify: 
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This condition leads to find the Lagrange multiplier so as to be the solution of the following set 
of adjoint equations [6]. As for the direct problem, only the adjoint equations concerning the sub-
domain 2 are presented. 
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When the adjoint variable is determined from the set of equations (9), the differential of L is 

equal to δβ
β

δ
∂
∂

=
LL . Furthermore, when T verifies equations (1) of the direct problem, we 

get JL δδ = . Note that the adjoint problem remains the same for the two problems considered. 
 
Gradient Components  
 

( ) 4,1== iihβ• Identification problem: . 
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where  corresponds to the boundary on which the parameter h  is applied.  and 

ihΓ mψ nψi represent 
the adjoint fields on the domains  and  delimited by the boundary . 

ihΓmΩ nΩ

 
( ) piiq ,1==β• Input problem:  

The heat flux q(t) is approximated in the form , where ( ) ( )∑
=

=
p

k
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σ kσ  is a given set of  

basis functions over the time interval. The gradient components are then equal to: 
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RESUTS AND DISCUSSION 
 
In this article the results are only numerical. What is called “pseudo-experimental” results 
corresponds to the temperatures resulting from the direct problem (1). For reasons of 
confidentiality the results are dimensionless. Variables are then defined by:  
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where tref is a given time, T  the initial temperature, T0 max the maximal temperature and qmax the 
maximal heat flux received by the mold. 
 

Estimation of Contact Resistances 
 
Fig. 3 represents the pseudo-experimental readings of the thermocouples  as well as the 
evolution of the wall temperature imposed on boundaries 

( ) 5,1=iiY

( ) 5,4,3=Γ ii . Experimentally this 
temperature is measured by a thermocouple placed between the heat exchanger and the external 
surface of the mold. 
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 +, YFig. 3  Temperature of the set-point (Δ) and of the thermocouples (Y1 2 ×, Y3 ◊, Y4 , Y5 ). 
 
Fig. 4a represents the evolution of the norm of the LS-criterion J. About 1700 iterations are 
necessary to reach the solution with an initial guess of 100W/m².K for each ( ) . Fig. 4b 
represents the evolution of the four parameters versus the iteration number. The maximum error 
between the exact and computed values is of 0.5%. 
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Fig. 4b  Estimated coefficient (h3 +, h4 •, h5 
×, h6 ). 

Fig. 4a  Norm of the LS-criterion. 
 

Determination of the Optimal Set-Point 
Once the TCR are estimated one can determine the optimal heat flux which is estimated on 
boundaries  (Fig. 2). The design of the mold allows considering that the predetermined ( ) 5,4,3=Γ ii



temperature in the preform can be reached by applying the same heat flux in each heat exchanger. 
However this method also permits to estimate different heat fluxes in each heat exchanger. The 

heat flux is searched as a linear piecewise function defined by  with p = 70 

which means that 70 unknowns have to be estimated. The temperatures used in the functional J 
are those coming from the thermocouples placed in the reinforcement (Y
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 and Y1 2). Indeed the 
desired temperature is defined only at these two points. Fig. 5a represents the desired and 
estimated temperature in the preform in the location of Y1 and Y2. This figure shows the really 
good agreement between the two sets of temperatures during the whole cycle. 
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Fig. 5a  Desired (▬) and estimated (+) 

temperatures. 
Fig. 5b  Optimal heat flux. 

Fig. 5b represents the heat flux determined by the algorithm to reach the predetermined 
temperature. During the first heating ramp the heat flux remains constant during half of the rise 
and then decreases linearly to reach zero at the beginning of the first isothermal stage. The same 
kind of evolution occurs during the second heating ramp and then during the cooling. The fact 
that the heat flux equals zero during isothermal stages indicates that the mold is thermally 
insulated with the surroundings (h∞ = 0 in Eqn.1). It is also noticeable that the heat flux 
anticipates the evolution of the temperature so as to vanquish the thermal inertia of the mold and 
of the preform. Fig. 6 represents the temperature in the preform as well as the temperature to be 
imposed on the fluid in the exchanger. This temperature is computed from the heat flux 
determined by using the same kind of inverse method. 
 

CONCLUSION 
 
An RTM autonomous metallic mold was developed for aeronautic applications. This mold is 
equipped with heat exchangers. By using this type of mold air oven is not needed which present 
several advantages among which one can note: less investment, possibility to manufacture large 
sized parts, better control of temperature cycle than in air oven. The conjugate gradient algorithm 
was used to evaluate the most significant thermal contact resistances between the different parts 
of the mold. Then the optimal heat flux allowing reaching a predetermined cycle of temperature 
into the preform was estimated. The results show a very good agreement between the computed 
and desired temperatures. Although the results presented here are only numerical the results 



coming from the first molding with this tool are encouraging. Complementary moldings are 
actually carried out to validate this methodology. 
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Fig. 6  Temperature in heat exchanger (×) and in the preform (+). 

 
Fig. 6 shows that the determination of this profile of temperature is not intuitive and that this type 
of method can be very efficient to reach the optimal set-point of temperature. 
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